Trigonometric Functional Equations
Soon-Mo Jung ()
Additional contact information
Soon-Mo Jung: Hongik University
Chapter Chapter 12 in Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, 2011, pp 267-284 from Springer
Abstract:
Abstract The famous addition and subtraction rules for trigonometric functions can be represented by using functional equations. Some of these equations will be introduced and the stability problems for them will be surveyed. Section 12.1 deals with the superstability phenomenon of the cosine functional equation (12.1) which stands for an addition theorem of cosine function. Similarly, the superstability of the sine functional equation (12.3) is proved in Section 12.2. In Section 12.3, trigonometric functional equations (12.8) and (12.9) with two unknown functions will be discussed. It is very interesting that these functional equations for complex-valued functions defined on an amenable group are not superstable, but they are stable in the sense of Hyers and Ulam, whereas the equations (12.1) and (12.3) are superstable. In Section 12.4, we will deal with the Hyers–Ulam stability of the Butler–Rassias functional equation.
Keywords: Abelian Group; Functional Equation; Amenable Group; Tional Equation; Addition Theorem (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4419-9637-4_12
Ordering information: This item can be ordered from
http://www.springer.com/9781441996374
DOI: 10.1007/978-1-4419-9637-4_12
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().