EconPapers    
Economics at your fingertips  
 

Additive Cauchy Equation

Soon-Mo Jung ()
Additional contact information
Soon-Mo Jung: Hongik University

Chapter Chapter 2 in Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, 2011, pp 19-86 from Springer

Abstract: Abstract The functional equation $$f(x+y)=f(x)+f(y)$$ is the most famous among the functional equations. Already in 1821, A. L. Cauchy solved it in the class of continuous real-valued functions. It is often called the additive Cauchy functional equation in honor of A. L. Cauchy. The properties of this functional equation are frequently applied to the development of theories of other functional equations. Moreover, the properties of the additive Cauchy equation are powerful tools in almost every field of natural and social sciences. In Section 2.1, the behaviors of solutions of the additive functional equation are described. The Hyers–Ulam stability problem of this equation is discussed in Section 2.2, and theorems concerning the Hyers–Ulam–Rassias stability of the equation are proved in Section 2.3. The stability on a restricted domain and its applications are introduced in Section 2.4. The method of invariant means and the fixed point method will be explained briefly in Sections 2.5 and 2.6. In Section 2.7, the composite functional congruences will be surveyed. The stability results for the Pexider equation will be treated in the last section.

Keywords: Banach Space; Additive Function; Topological Vector Space; Real Banach Space; Restricted Domain (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4419-9637-4_2

Ordering information: This item can be ordered from
http://www.springer.com/9781441996374

DOI: 10.1007/978-1-4419-9637-4_2

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-1-4419-9637-4_2