On Detection of Community Structure in Dynamic Social Networks
Nam P. Nguyen (),
Ying Xuan () and
My T. Thai ()
Additional contact information
Nam P. Nguyen: University of Florida
Ying Xuan: University of Florida
My T. Thai: University of Florida
Chapter Chapter 11 in Handbook of Optimization in Complex Networks, 2012, pp 307-347 from Springer
Abstract:
Abstract Community structure is a very special and interesting property of social networks. Knowledge of network community structure not only provides us key insights into developing more social-aware strategies for social network problems, but also promises a wide range of applications enabled by mobile networking, such as routings in Mobile Ad Hoc Networks (MANETs) and worm containments in cellular networks. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social activities and interactions tend to come and go rapidly. Can we quickly and efficiently identify the network community structure? Can we adaptively update this structure based on its history instead of recomputing from scratch?In this chapter, we present two methods for detecting community structures on social networks. First, we introduce Quick Community Adaptation (QCA), an adaptive modularity-based method for identifying and tracing the discrete community structure of dynamic social networks. This approach has not only the power of quickly and efficiently updating the network structure by only using the identified structures, but also the ability of tracing the evolution of its communities over time. Next, we present DOCA, an quick method for revealing the overlapping network communities that can be implemented in a decentralized manner. To illustrate the effectiveness of our methods, we extensively test QCA and DOCA on not only synthesized but also on real-world dynamic social networks including ENRON email network, arXiv e-print citation network and Facebook network. Finally, we demonstrate the bright applicability of our methods via two realistic applications on routing strategies in MANETs and worm containment on online social networks.
Keywords: Community Structure; Delivery Ratio; Community Detection; Online Social Network; Normalize Mutual Information (search for similar items in EconPapers)
Date: 2012
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-1-4614-0857-4_11
Ordering information: This item can be ordered from
http://www.springer.com/9781461408574
DOI: 10.1007/978-1-4614-0857-4_11
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().