Solving Large Scale Optimization Problems in the Transportation Industry and Beyond Through Column Generation
Yanqi Xu ()
Additional contact information
Yanqi Xu: Alps Analytics Group
A chapter in Optimization in Large Scale Problems, 2019, pp 269-292 from Springer
Abstract:
Abstract Column Generation is a very powerful class of combinatorial optimization algorithms that has been used successfully to solve a variety of large scale optimization problems. Its application has helped many companies in various industries increase revenue and reduce costs significantly, particularly in transportation, energy, manufacturing, and telecommunication companies. In this chapter, we will first discuss the motivations for column generation, then we will provide an intuitive but rigorous treatment of the mechanisms of column generation – how it works, why it works. We will then give descriptions on the branch and price algorithm and several examples of column generation’s successful applications in one of the world’s largest airlines. We will discuss monthly airline crew schedule optimization for bidlines, crew pairing optimization, and integrated modeling of fleet and routing in the optimization of aircraft scheduling. Part of the focus is on business requirements and priorities in these areas and how the column generation models are built to effectively meet these challenges. Some airline industry domain-specific details are provided to allow the readers to better appreciate the scheduling problems’ complexities that made the master-subproblem approach in column generation essential. We will also discuss the significant run-time speedups for these large scale scheduling problems due to various practical model enhancements, as well as progress in the large scale optimization space made possible by technologies such as parallel processing, big data, and better chips. At last, we will briefly discuss several example variants of column generation and their applications in various industries. We will also review recent applications of optimization techniques to machine learning as well as the future potentials of large scale optimization in this field. This chapter can be used as a primer on the fundamentals of column generation techniques since it clearly addresses essential theoretical concepts that are sometimes elusive to researchers and graduate students who are new to this area. The chapter should also be helpful to practitioners who would like to gain insights into how to build effective column generation models to solve real world large scale optimization problems.
Keywords: Large scale optimization; Integer programming; Column generation; Network optimization; Crew scheduling; Machine learning; Interpretable AI; Classification (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-28565-4_23
Ordering information: This item can be ordered from
http://www.springer.com/9783030285654
DOI: 10.1007/978-3-030-28565-4_23
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().