Additive Functional Inequalities and Partial Multipliers in Complex Banach Algebras
Jung Rye Lee (),
Choonkil Park () and
Themistocles M. Rassias ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens
A chapter in Mathematical Analysis and Applications, 2019, pp 365-389 from Springer
Abstract:
Abstract In this paper, we solve the additive functional inequalities 1 s a t i s h 1 ∥ f ( x + y + z ) − f ( x + y ) − f ( z ) ∥ ≤ ∥ s ( f ( x − y ) + f ( y − z ) − f ( x − z ) ) ∥ $$\displaystyle \begin{aligned} \begin{array}{rcl}{} \| f(x+y+z)-f(x+y)- f(z)\| \le \|s (f(x-y) + f(y-z )- f(x-z))\| \end{array} \end{aligned} $$ and 2 s a t i s h 2 ∥ f ( x − y ) + f ( y − z ) − f ( x − z ) ∥ ≤ ∥ s ( f ( x + y − z ) + f ( x − y + z ) − 2 f ( x ) ) ∥ , $$\displaystyle \begin{aligned} \begin{array}{rcl}{} \|f(x-y) + f(y-z )- f(x-z) \| \le \|s ( f(x+y-z) + f(x-y+z )- 2f(x) ) \| , \end{array} \end{aligned} $$ where s is a fixed nonzero complex number with |s|
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-31339-5_13
Ordering information: This item can be ordered from
http://www.springer.com/9783030313395
DOI: 10.1007/978-3-030-31339-5_13
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().