Additive (ρ1, ρ2)-Functional Inequalities in Complex Banach Spaces
Jung Rye Lee (),
Choonkil Park () and
Themistocles M. Rassias ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens
A chapter in Computational Mathematics and Variational Analysis, 2020, pp 227-245 from Springer
Abstract:
Abstract In this paper, we introduce and solve the following additive (ρ 1, ρ 2)-functional inequalities: 1 f x − y − f ( x ) + f ( y ) ≥ ∥ ρ 1 ( f ( x + y ) − f ( x ) − f ( y ) ) ∥ + ρ 2 f ( y − x ) − f ( y ) + f ( x ) , $$\displaystyle \begin{aligned} \begin{array}{rcl} \left\|f\left(x-y\right) - f(x )+ f(y)\right\| &\displaystyle \ge &\displaystyle \|\rho_1 (f(x+y)-f(x)-f(y))\| \\ &\displaystyle + &\displaystyle \left\|\rho_2 \left( f(y-x)-f(y)+f(x)\right)\right\|, {} \end{array} \end{aligned} $$ where ρ 1 and ρ 2 are fixed complex numbers with |ρ 1| + |ρ 2| > 1, and 2 f x + y − f ( x ) − f ( y ) ≥ ∥ ρ 1 ( f ( x − y ) − f ( x ) + f ( y ) ) ∥ + ρ 2 f ( y − x ) − f ( y ) + f ( x ) , $$\displaystyle \begin{aligned} \begin{array}{rcl} \left\|f\left(x+y\right) - f(x )- f(y)\right\|&\displaystyle \ge &\displaystyle \|\rho_1 (f(x-y)-f(x)+f(y))\| \\ &\displaystyle + &\displaystyle \left\|\rho_2 \left( f(y-x)-f(y)+f(x)\right)\right\| ,{} \end{array} \end{aligned} $$ where ρ 1 and ρ 2 are fixed complex numbers with 1 + |ρ 1| > |ρ 2| > 1. Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of the additive (ρ 1, ρ 2)-functional inequalities (2) and (1) in complex Banach spaces.
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-44625-3_13
Ordering information: This item can be ordered from
http://www.springer.com/9783030446253
DOI: 10.1007/978-3-030-44625-3_13
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().