Barrier Coverage
Weili Wu,
Zhao Zhang,
Wonjun Lee and
Ding-Zhu Du
Additional contact information
Weili Wu: University of Texas at Dallas
Zhao Zhang: Zhejiang Normal University
Wonjun Lee: Korea University
Ding-Zhu Du: University of Texas at Dallas
Chapter Chapter 10 in Optimal Coverage in Wireless Sensor Networks, 2020, pp 159-181 from Springer
Abstract:
Abstract A region is a belt if its boundary consists of two parts such that every point in one part has equal distance to the other part. This distance is called width and these two parallel boundary parts are called two banks. (When a belt is considered as river, two boundary parts are two banks.) For example, ring and strip are belts. A belt is closed if it is a closed and bounded region, such as ring. An open belt can be seen as a piece of a closed belt between two parallel lines (Fig. 10.1). In such a case, the boundary on the two lines are considered to be open and called belt-ends. Hence, an open belt keeps its boundary consisting of two banks and two belt-ends. For simplicity, from now on, by a belt, we mean an open belt since the closed belt can be turned to an open belt easily. In fact, use a line to cut a closed belt. Then the closed belt can be turned to an open belt and what we do for an open belt can be extended to a closed belt without any trouble.
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-52824-9_10
Ordering information: This item can be ordered from
http://www.springer.com/9783030528249
DOI: 10.1007/978-3-030-52824-9_10
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().