EconPapers    
Economics at your fingertips  
 

Non-lattice Covering and Quantization of High Dimensional Sets

Jack Noonan () and Anatoly Zhigljavsky ()
Additional contact information
Jack Noonan: Cardiff University
Anatoly Zhigljavsky: Cardiff University

A chapter in Black Box Optimization, Machine Learning, and No-Free Lunch Theorems, 2021, pp 273-318 from Springer

Abstract: Abstract The main problem considered in this paper is construction and theoretical study of efficient n-point coverings of a d-dimensional cube [−1, 1]d. Targeted values of d are between 5 and 50; n can be in hundreds or thousands and the designs (collections of points) are nested. This paper is a continuation of our paper (Noonan and Zhigljavsky, SN Oper Res Forum, 2020), where we have theoretically investigated several simple schemes and numerically studied many more. In this paper, we extend the theoretical constructions of (Noonan and Zhigljavsky, SN Oper Res Forum, 2020) for studying the designs that were found to be superior to the ones theoretically investigated in (Noonan and Zhigljavsky, SN Oper Res Forum, 2020). We also extend our constructions for new construction schemes that provide even better coverings (in the class of nested designs) than the ones numerically found in (Noonan and Zhigljavsky, SN Oper Res Forum, 2020). In view of a close connection of the problem of quantization to the problem of covering, we extend our theoretical approximations and practical recommendations to the problem of construction of efficient quantization designs in a cube [−1, 1]d. In the last section, we discuss the problems of covering and quantization in a d-dimensional simplex; practical significance of this problem has been communicated to the authors by Professor Michael Vrahatis, a co-editor of the present volume.

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-66515-9_10

Ordering information: This item can be ordered from
http://www.springer.com/9783030665159

DOI: 10.1007/978-3-030-66515-9_10

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-66515-9_10