EconPapers    
Economics at your fingertips  
 

Hyers–Ulam Stability of an Additive-Quadratic Functional Equation

Jung Rye Lee (), Choonkil Park () and Themistocles M. Rassias ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens

A chapter in Approximation and Computation in Science and Engineering, 2022, pp 561-572 from Springer

Abstract: Abstract Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of Lie biderivations and Lie bihomomorphisms in Lie Banach algebras, associated with the bi-additive functional inequality 1 ∥ f ( x + y , z + w ) + f ( x + y , z − w ) + f ( x − y , z + w ) + f ( x − y , z − w ) − 4 f ( x , z ) ∥ ≤ s 2 f x + y , z − w + 2 f x − y , z + w − 4 f ( x , z ) + 4 f ( y , w ) , $$\displaystyle \begin{aligned} & \| f(x+y, z+w) + f(x+y, z-w) + f(x-y, z+w) \\ &\qquad + f(x-y, z-w) -4f(x,z)\| \\ & \quad \le \left \|s \left (2f\left (x\kern -0.7pt+\kern -0.7pt y, z\kern -0.7pt-\kern -0.7pt w\right ) \kern -0.7pt+\kern -0.7pt 2f\left (x-y, z\kern -0.7pt+\kern -0.7pt w\right ) \kern -0.7pt-\kern -0.7pt 4f(x,z )\kern -0.7pt+\kern -0.7pt 4 f(y, w)\right )\right \|, \end{aligned} $$ where s is a fixed nonzero complex number with |s|

Keywords: Hyers–Ulam stability; Mixed type functional equation; Banach space; Fuzzy Banach space; Fixed point method (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-84122-5_29

Ordering information: This item can be ordered from
http://www.springer.com/9783030841225

DOI: 10.1007/978-3-030-84122-5_29

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-84122-5_29