EconPapers    
Economics at your fingertips  
 

Orthogonal Dirichlet Polynomials

Doron S. Lubinsky ()
Additional contact information
Doron S. Lubinsky: Georgia Institute of Technology

A chapter in Approximation and Computation in Science and Engineering, 2022, pp 573-587 from Springer

Abstract: Abstract Let λ j j = 1 ∞ $$\left \{ \lambda _{j}\right \} _{j=1}^{\infty }$$ be a sequence of distinct positive numbers. Let w be a non-negative function, integrable on the real line. One can form orthogonal Dirichlet polynomials ϕ n $$\left \{ \phi _{n}\right \} $$ from linear combinations of λ j − i t j = 1 n $$\left \{ \lambda _{j}^{-it}\right \} _{j=1}^{n}$$ , satisfying the orthogonality relation ∫ − ∞ ∞ ϕ n t ϕ m t ¯ w t d t = δ m n . $$\displaystyle \int _{-\infty }^{\infty }\phi _{n}\left ( t\right ) \overline {\phi _{m}\left ( t\right ) }w\left ( t\right ) dt=\delta _{mn}. $$ Weights that have been considered include the arctan density w t = 1 π 1 + t 2 $$w\left ( t\right ) =\frac {1}{\pi \left ( 1+t^{2}\right ) }$$ ; rational function choices of w; w t = e − t $$w\left ( t\right ) =e^{-t}$$ ; and w t $$w\left ( t\right ) $$ constant on an interval symmetric about 0. We survey these results and discuss possible future directions.

Keywords: Dirichlet polynomials; Orthogonal polynomials; Christoffwl functions; Arctangent density (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-84122-5_30

Ordering information: This item can be ordered from
http://www.springer.com/9783030841225

DOI: 10.1007/978-3-030-84122-5_30

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-84122-5_30