Codifferentials and Quasidifferentials of the Expectation of Nonsmooth Random Integrands and Two-Stage Stochastic Programming
M. V. Dolgopolik ()
Additional contact information
M. V. Dolgopolik: Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
A chapter in High-Dimensional Optimization and Probability, 2022, pp 185-218 from Springer
Abstract:
Abstract This work is devoted to an analysis of exact penalty functions and optimality conditions for nonsmooth two-stage stochastic programming problems. To this end, we first study the co/quasidifferentiability of the expectation of nonsmooth random integrands and obtain explicit formulae for its co and quasidifferential under some natural assumptions on the integrand. Then, we analyse exact penalty functions for a variational reformulation of two-stage stochastic programming problems and obtain sufficient conditions for the global exactness of these functions with two different penalty terms. In the end of the chapter, we combine our results on the co/quasidifferentiability of the expectation of nonsmooth random integrands and exact penalty functions to derive optimality conditions for nonsmooth two-stage stochastic programming problems in terms of codifferentials.
Date: 2022
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-031-00832-0_5
Ordering information: This item can be ordered from
http://www.springer.com/9783031008320
DOI: 10.1007/978-3-031-00832-0_5
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().