Batching-Based Approaches for Optimized Packing of Jobs in the Spatial Scheduling Problem
Sudharshana Srinivasan (),
J. Paul Brooks () and
Jill Hardin Wilson ()
Additional contact information
Sudharshana Srinivasan: Virginia Commonwealth University
J. Paul Brooks: Virginia Commonwealth University
Jill Hardin Wilson: Northwestern University
Chapter Chapter 12 in Optimized Packings with Applications, 2015, pp 243-263 from Springer
Abstract:
Abstract Spatial resources are often an important consideration in shipbuilding and large-scale manufacturing industries. Spatial scheduling problems (SSP) involve the non-overlapping arrangement of jobs within a limited physical workspace such that some scheduling objective is optimized. The jobs are typically heavy and occupy large areas, requiring that the same contiguous units of space be assigned throughout the duration of their processing time. This adds an additional level of complexity to the general scheduling problem. Since solving large instances using exact methods becomes computationally intractable, there is a need to develop alternate solution methodologies to provide near optimal solutions for these problems. Much of the literature focuses on minimizing the makespan of the schedule. We propose two heuristic methods for the minimum sum of completion times objective. Our approach is to group jobs into a batch and then apply a scheduling heuristic to the batches. We show that grouping jobs earlier in the schedule, although intuitive, can result in poor performance when jobs have sufficiently large differences in processing times. We provide bounds on the performance of the algorithms and also present computational results comparing the solutions to the optimal objective obtained from the integer programming formulation for SSP. With a smaller number of jobs, both algorithms produce comparable solutions. For instances with a larger number of jobs and a higher variability in spatial dimensions, we observe that the efficient area model outperforms the iterative model both in terms of solution quality and run time.
Keywords: Spatial scheduling; Integer programs; Approximation algorithms; Optimal packings (search for similar items in EconPapers)
Date: 2015
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-18899-7_12
Ordering information: This item can be ordered from
http://www.springer.com/9783319188997
DOI: 10.1007/978-3-319-18899-7_12
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().