Introduction
William E. Hart,
Carl D. Laird,
Jean-Paul Watson,
David L. Woodruff,
Gabriel A. Hackebeil,
Bethany L. Nicholson and
John D. Siirola
Additional contact information
William E. Hart: Sandia National Laboratories
Carl D. Laird: Sandia National Laboratories
Jean-Paul Watson: Sandia National Laboratories
David L. Woodruff: University of California, Davis
Gabriel A. Hackebeil: University of Michigan
Bethany L. Nicholson: Sandia National Laboratories
John D. Siirola: Sandia National Laboratories
Chapter Chapter 1 in Pyomo — Optimization Modeling in Python, 2017, pp 1-11 from Springer
Abstract:
Abstract This chapter introduces and motivates Pyomo, a Python-based tool for modeling and solving optimization problems. Modeling is a fundamental process in many aspects of scientific research, engineering, and business. Algebraic modeling languages like Pyomo are high-level languages for specifying and solving mathematical optimization problems. Pyomo is a flexible, extensible modeling framework that captures and extends central ideas found in modern algebraic modeling languages, all within the context of a widely used programming language.
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-58821-6_1
Ordering information: This item can be ordered from
http://www.springer.com/9783319588216
DOI: 10.1007/978-3-319-58821-6_1
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().