Revised Primal Simplex Algorithm
Nikolaos Ploskas and
Nikolaos Samaras
Additional contact information
Nikolaos Ploskas: University of Macedonia
Nikolaos Samaras: University of Macedonia
Chapter Chapter 8 in Linear Programming Using MATLAB®, 2017, pp 329-381 from Springer
Abstract:
Abstract The simplex algorithm is one of the top ten algorithms with the greatest influence in the twentieth century and the most widely used method for solving linear programming problems (LPs). Nearly all Fortune 500 companies use the simplex algorithm to optimize several tasks. This chapter presents the revised primal simplex algorithm. Numerical examples are presented in order for the reader to understand better the algorithm. Furthermore, an implementation of the algorithm in MATLAB is presented. The implementation is modular allowing the user to select which scaling technique, pivoting rule, and basis update method will use in order to solve LPs. Finally, a computational study over benchmark LPs and randomly generated sparse LPs is performed in order to compare the efficiency of the proposed implementation with MATLAB’s simplex algorithm.
Date: 2017
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-65919-0_8
Ordering information: This item can be ordered from
http://www.springer.com/9783319659190
DOI: 10.1007/978-3-319-65919-0_8
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().