Nonsmooth Convex Optimization
Yurii Nesterov
Additional contact information
Yurii Nesterov: Catholic University of Louvain
Chapter Chapter 3 in Lectures on Convex Optimization, 2018, pp 139-240 from Springer
Abstract:
Abstract In this chapter, we consider the most general convex optimization problems, which are formed by non-differentiable convex functions. We start by studying the main properties of these functions and the definition of subgradients, which are the main directions used in the corresponding optimization schemes. We also prove the necessary facts from Convex Analysis, including different variants of Minimax Theorems. After that, we establish the lower complexity bounds and prove the convergence rate of the Subgradient Method for constrained and unconstrained optimization problems. This method appears to be optimal uniformly in the dimension of the space of variables. In the next section, we consider other optimization methods, which can work in spaces of moderate dimension (the Method of Centers of Gravity, the Ellipsoid Algorithm). The chapter concludes with a presentation of methods based on a complete piece-wise linear model of the objective function (Kelley’s method, the Level Method).
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-319-91578-4_3
Ordering information: This item can be ordered from
http://www.springer.com/9783319915784
DOI: 10.1007/978-3-319-91578-4_3
Access Statistics for this chapter
More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().