Dimensionality Reduction in Data Science
Edited by Max Garzon (),
Ching-Chi Yang (),
Deepak Venugopal (),
Nirman Kumar (),
Kalidas Jana () and
Lih-Yuan Deng ()
in Springer Books from Springer
Date: 2022
ISBN: 978-3-031-05371-9
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- Ch Chapter 1 What Is Data Science (DS)?
- Max Garzon, Ching-Chi Yang and Lih-Yuan Deng
- Ch Chapter 10 Metaheuristics of DR Methods
- Deepak Venugopal, Max Garzon, Nirman Kumar, Ching-Chi Yang and Lih-Yuan Deng
- Ch Chapter 11 Appendices
- Max Garzon, Lih-Yuan Deng, Nirman Kumar, Deepak Venugopal, Kalidas Jana and Ching-Chi Yang
- Ch Chapter 2 Solutions to Data Science Problems
- Deepak Venugopal, Lih-Yuan Deng and Max Garzon
- Ch Chapter 3 What Is Dimensionality Reduction (DR)?
- Lih-Yuan Deng, Max Garzon and Nirman Kumar
- Ch Chapter 4 Conventional Statistical Approaches
- Ching-Chi Yang, Max Garzon and Lih-Yuan Deng
- Ch Chapter 5 Geometric Approaches
- Nirman Kumar
- Ch Chapter 6 Information-Theoretic Approaches
- Max Garzon, Sambriddhi Mainali and Kalidas Jana
- Ch Chapter 7 Molecular Computing Approaches
- Max Garzon and Sambriddhi Mainali
- Ch Chapter 8 Statistical Learning Approaches
- Ching-Chi Yang and Lih-Yuan Deng
- Ch Chapter 9 Machine Learning Approaches
- Deepak Venugopal and Max Garzon
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-031-05371-9
Ordering information: This item can be ordered from
http://www.springer.com/9783031053719
DOI: 10.1007/978-3-031-05371-9
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().