EconPapers    
Economics at your fingertips  
 

Algorithms with JULIA

Clemens Heitzinger ()
Additional contact information
Clemens Heitzinger: Center for Artificial Intelligence and Machine Learning (CAIML) and Technische Universität Wien, Department of Mathematics and Geoinformation

in Springer Books from Springer

Date: 2022
ISBN: 978-3-031-16560-3
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Chapters in this book:

Ch Chapter 1 An Introduction to the Julia Language
Clemens Heitzinger
Ch Chapter 10 Partial-Differential Equations
Clemens Heitzinger
Ch Chapter 11 Global Optimization
Clemens Heitzinger
Ch Chapter 12 Local Optimization
Clemens Heitzinger
Ch Chapter 13 Neural Networks
Clemens Heitzinger
Ch Chapter 14 Bayesian Estimation
Clemens Heitzinger
Ch Chapter 2 Functions
Clemens Heitzinger
Ch Chapter 3 Variables, Constants, Scopes, and Modules
Clemens Heitzinger
Ch Chapter 4 Built-in Data Structures
Clemens Heitzinger
Ch Chapter 5 User Defined Data Structures and the Type System
Clemens Heitzinger
Ch Chapter 6 Control Flow
Clemens Heitzinger
Ch Chapter 7 Macros
Clemens Heitzinger
Ch Chapter 8 Arrays and Linear Algebra
Clemens Heitzinger
Ch Chapter 9 Ordinary Differential Equations
Clemens Heitzinger

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-031-16560-3

Ordering information: This item can be ordered from
http://www.springer.com/9783031165603

DOI: 10.1007/978-3-031-16560-3

Access Statistics for this book

More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-09
Handle: RePEc:spr:sprbok:978-3-031-16560-3