Algorithms with JULIA
Clemens Heitzinger ()
Additional contact information
Clemens Heitzinger: Center for Artificial Intelligence and Machine Learning (CAIML) and Technische Universität Wien, Department of Mathematics and Geoinformation
in Springer Books from Springer
Date: 2022
ISBN: 978-3-031-16560-3
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- Ch Chapter 1 An Introduction to the Julia Language
- Clemens Heitzinger
- Ch Chapter 10 Partial-Differential Equations
- Clemens Heitzinger
- Ch Chapter 11 Global Optimization
- Clemens Heitzinger
- Ch Chapter 12 Local Optimization
- Clemens Heitzinger
- Ch Chapter 13 Neural Networks
- Clemens Heitzinger
- Ch Chapter 14 Bayesian Estimation
- Clemens Heitzinger
- Ch Chapter 2 Functions
- Clemens Heitzinger
- Ch Chapter 3 Variables, Constants, Scopes, and Modules
- Clemens Heitzinger
- Ch Chapter 4 Built-in Data Structures
- Clemens Heitzinger
- Ch Chapter 5 User Defined Data Structures and the Type System
- Clemens Heitzinger
- Ch Chapter 6 Control Flow
- Clemens Heitzinger
- Ch Chapter 7 Macros
- Clemens Heitzinger
- Ch Chapter 8 Arrays and Linear Algebra
- Clemens Heitzinger
- Ch Chapter 9 Ordinary Differential Equations
- Clemens Heitzinger
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-031-16560-3
Ordering information: This item can be ordered from
http://www.springer.com/9783031165603
DOI: 10.1007/978-3-031-16560-3
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().