Machine Learning for Data Science Handbook
Edited by Lior Rokach (),
Oded Maimon () and
Erez Shmueli ()
in Springer Books from Springer
Date: 2023
Edition: Third Edition 2023
ISBN: 978-3-031-24628-9
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- Data Science and Knowledge Discovery Using Machine Learning Methods
- Oded Maimon, Lior Rokach and Erez Shmueli
- Handling Missing Attribute Values
- Jerzy W. Grzymala-Busse and Witold J. Grzymala-Busse
- Data Integration Process Automation Using Machine Learning: Issues and Solution
- Kartick Chandra Mondal and Swati Saha
- Rule Induction
- Jerzy W. Grzymala-Busse
- Nearest-Neighbor Methods: A Modern Perspective
- Aryeh Kontorovich and Samory Kpotufe
- Support Vector Machines
- Armin Shmilovici
- Empowering Interpretable, Explainable Machine Learning Using Bayesian Network Classifiers
- Boaz Lerner
- Soft Decision Trees
- Oren Fivel, Moshe Klein and Oded Maimon
- Quality Assessment and Evaluation Criteria in Supervised Learning
- Amichai Painsky
- Trajectory Clustering Analysis
- Yulong Wang and Yuan Yan Tang
- Clustering High-Dimensional Data
- Michael E. Houle, Marie Kiermeier and Arthur Zimek
- Fuzzy C-Means Clustering: Advances and Challenges (Part II)
- Janmenjoy Nayak, H. Swapna Rekha and Bighnaraj Naik
- Clustering in Streams
- Charu C. Aggarwal
- Introduction to Deep Learning
- Lihi Shiloh-Perl and Raja Giryes
- Graph Embedding
- Palash Goyal
- Autoencoders
- Dor Bank, Noam Koenigstein and Raja Giryes
- Generative Adversarial Networks
- Gilad Cohen and Raja Giryes
- Spatial Data Science
- Yan Li, Yiqun Xie and Shashi Shekhar
- Multimedia Data Learning
- Zhongfei Mark Zhang and Ruofei Bruce Zhang
- Web Mining
- Petar Ristoski
- Mining Temporal Data
- Robert Moskovitch
- Cloud Big Data Mining and Analytics: Bringing Greenness and Acceleration in the Cloud
- Hrishav Bakul Barua and Kartick Chandra Mondal
- Multi-Label Ranking: Mining Multi-Label and Label Ranking Data
- Lihi Dery
- Reinforcement Learning for Data Science
- Jonatan Barkan, Michal Moran and Goren Gordon
- Adversarial Machine Learning
- Ziv Katzir and Yuval Elovici
- Ensembled Transferred Embeddings
- Yonatan Hadar and Erez Shmueli
- Data Mining in Medicine
- Beatrice Amico, Carlo Combi and Yuval Shahar
- Recommender Systems
- Shuai Zhang, Aston Zhang and Lina Yao
- Activity Recognition
- Jindong Wang, Yiqiang Chen and Chunyu Hu
- Social Network Analysis for Disinformation Detection
- Aviad Elyashar, Maor Reuben, Asaf Shabtai and Rami Puzis
- Online Propaganda Detection
- Mark Last
- Interpretable Machine Learning forFinancial Applications
- Boris Kovalerchuk, Evgenii Vityaev, Alexander Demin and Antoni Wilinski
- Predictive Analytics for Targeting Decisions
- Jacob Zahavi
- Machine Learning for the Geosciences
- Neta Rabin and Yuri Bregman
- Sentiment Analysis for Social Text
- Nir Ofek
- Human Resources-Based Organizational Data Mining (HRODM): Themes, Trends, Focus, Future
- Hila Chalutz-Ben Gal
- Algorithmic Fairness
- Dana Pessach and Erez Shmueli
- Privacy-Preserving Data Mining (PPDM)
- Ron S. Hirschprung
- Explainable Machine Learning and Visual Knowledge Discovery
- Boris Kovalerchuk
- Visual Analytics and Human Involvement in Machine Learning
- Salomon Eisler and Joachim Meyer
- Explainable Artificial Intelligence (XAI): Motivation, Terminology, and Taxonomy
- Aviv Notovich, Hila Chalutz-Ben Gal and Irad Ben-Gal
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-031-24628-9
Ordering information: This item can be ordered from
http://www.springer.com/9783031246289
DOI: 10.1007/978-3-031-24628-9
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().