Kolmogorov’s Heritage in Mathematics
Edited by Éric Charpentier (),
Annick Lesne () and
Nikolaï K. Nikolski ()
in Springer Books from Springer
Date: 2007
ISBN: 978-3-540-36351-4
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Chapters in this book:
- The youth of Andrei Nikolaevich and Fourier series
- Jean-Pierre Kahane
- Kolmogorov’s contribution to intuitionistic logic
- Thierry Coquand
- Some aspects of the probabilistic work
- Loïc Chaumont, Laurent Mazliak and Marc Yor
- Infinite dimensional Kolmogorov equations
- Giuseppe Da Prato
- From Kolmogorov’s theorem on empirical distribution to number theory
- Kevin Ford
- Kolmogorov’s ε-entropy and the problem of statistical estimation
- Mikhail Nikouline and Valentin Solev
- Kolmogorov and topology
- Victor M. Buchstaber
- Geometry and approximation theory in A. N. Kolmogorov’s works
- Vladimir M. Tikhomirov
- Kolmogorov and population dynamics
- Karl Sigmund
- Resonances and small divisors
- Étienne Ghys
- The KAM Theorem
- John H. Hubbard
- From Kolmogorov’s Work on entropy of dynamical systems to Non-uniformly hyperbolic dynamics
- Denis V. Kosygin and Yakov G. Sinai
- From Hilbert’s 13th Problem to the theory of neural networks: constructive aspects of Kolmogorov’s Superposition Theorem
- Vasco Brattka
- Kolmogorov Complexity
- Bruno Durand and Alexander Zvonkin
- Algorithmic Chaos and the Incompressibility Method
- Paul Vitanyi
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprbok:978-3-540-36351-4
Ordering information: This item can be ordered from
http://www.springer.com/9783540363514
DOI: 10.1007/978-3-540-36351-4
Access Statistics for this book
More books in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().