EconPapers    
Economics at your fingertips  
 

High-Frequency Vibrations of Systems with Concentrated Masses Along Planes

D. Gömez (), M. Lobo () and M. E. Pérez ()
Additional contact information
D. Gömez: Universidad de Cantabria
M. Lobo: Universidad de Cantabria
M. E. Pérez: Universidad de Cantabria

Chapter 15 in Integral Methods in Science and Engineering, Volume 1, 2010, pp 149-159 from Springer

Abstract: Abstract Let Ω be an open bounded domain of ℝ3 with a smooth boundary $$\partial\Omega$$ . Weassume that Ω is divided into two parts Ω+ and Ω- by the plane $$\gamma: \Omega = \Omega_+ \cup \Omega_- \cup \gamma$$ .For simplicity, we assume that the plane { x 3 = 0} cuts Ω and $$\gamma = \Omega \cap \{x_3 = 0\}$$ . Let ε be a small positive parameter that tends to zero. We denote by ωε the ε-neighborhood of γ, i.e., $$\omega_\varepsilon = \Omega \cup \{|x_3|

Keywords: Asymptotic Behavior; Dirichlet Problem; Compact Operator; Constant Independent; Concentrate Masse (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-0-8176-4899-2_15

Ordering information: This item can be ordered from
http://www.springer.com/9780817648992

DOI: 10.1007/978-0-8176-4899-2_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-0-8176-4899-2_15