EconPapers    
Economics at your fingertips  
 

Existence of Extremal Solutions of Singular Functional Cauchy and Cauchy–Nicoletti Problems

S. Seikkala () and S. Heikkilä ()
Additional contact information
S. Seikkala: University of Oulu
S. Heikkilä: University of Oulu

Chapter 27 in Integral Methods in Science and Engineering, Volume 1, 2010, pp 291-300 from Springer

Abstract: Abstract In this chapter we apply fixed point results for mappings in partially ordered spaces presented in ([CaHe00], [HeiLa94]) to derive existence results for the Cauchy problem $$q(u(t))u^\prime (t) = f(t,u) \mbox{for a.e} t \in J = [0, T], u(0) = 0,$$ and for the Cauchy-Nicoletti problem $$q_i(u_i(t))u_i^\prime (t) = f_i(t,u) \mbox{for a.e} t \in J, u_i(t_i) = c_i, i = 1, \ldots, n,$$ where $$0 = t_1

Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-0-8176-4899-2_27

Ordering information: This item can be ordered from
http://www.springer.com/9780817648992

DOI: 10.1007/978-0-8176-4899-2_27

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-0-8176-4899-2_27