EconPapers    
Economics at your fingertips  
 

Combinatorial Cardinal Characteristics of the Continuum

Andreas Blass ()
Additional contact information
Andreas Blass: University of Michigan, Department of Mathematics

Chapter 6 in Handbook of Set Theory, 2010, pp 395-489 from Springer

Abstract: Abstract The combinatorial study of subsets of the set N of natural numbers and of functions from N to N leads to numerous cardinal numbers, uncountable but no larger than the continuum. For example, how many infinite subsets X of N must I take so that every subset Y of N or its complement includes one of my X’s? Or how many functions f from N to N must I take so that every function from N to N is majorized by one of my f’s? The main results about these cardinal characteristics of the continuum are of two sorts: inequalities involving two (or sometimes three) characteristics, and independence results saying that other such inequalities cannot be proved in ZFC. Other results concern, for example, the cofinalities of these cardinals or connections with other areas of mathematics. This survey concentrates on the combinatorial set-theoretic aspects of the theory.

Keywords: Ground Model; Cardinal Characteristic; Countable Support; Random Real; Force Notion (search for similar items in EconPapers)
Date: 2010
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4020-5764-9_7

Ordering information: This item can be ordered from
http://www.springer.com/9781402057649

DOI: 10.1007/978-1-4020-5764-9_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4020-5764-9_7