EconPapers    
Economics at your fingertips  
 

Nonnegative Matrix Factorization

Ke-Lin Du () and M. N. S. Swamy
Additional contact information
Ke-Lin Du: Concordia University, Department of Electrical and Computer Engineering
M. N. S. Swamy: Concordia University, Department of Electrical and Computer Engineering

Chapter Chapter 14 in Neural Networks and Statistical Learning, 2019, pp 427-445 from Springer

Abstract: Abstract Low-rank matrix factorization or factor analysis is an important task that is helpful in the analysis of high-dimensional real-world data such as dimension reduction, data compression, feature extraction, and information retrieval. Nonnegative matrix factorization is a special low-rank factorization technique for nonnegative data. This chapter is dedicated to nonnegative matrix factorization. Other matrix decomposition methods, such as Nystrom method and CUR matrix decomposition, are also introduced in this chapter.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4471-7452-3_14

Ordering information: This item can be ordered from
http://www.springer.com/9781447174523

DOI: 10.1007/978-1-4471-7452-3_14

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4471-7452-3_14