EconPapers    
Economics at your fingertips  
 

Compressed Sensing and Dictionary Learning

Ke-Lin Du () and M. N. S. Swamy
Additional contact information
Ke-Lin Du: Concordia University, Department of Electrical and Computer Engineering
M. N. S. Swamy: Concordia University, Department of Electrical and Computer Engineering

Chapter Chapter 18 in Neural Networks and Statistical Learning, 2019, pp 525-547 from Springer

Abstract: Abstract Sparse coding is a matrix factorization technique. It models a target signal as a sparse linear combination of atoms (elementary signals) drawn from a dictionary (a fixed collection). Sparse coding has become a popular paradigm in signal processing, statistics, and machine learning. This chapter introduces compressed sensing, sparse representation/sparse coding, tensor compressed sensing, and sparse PCA.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4471-7452-3_18

Ordering information: This item can be ordered from
http://www.springer.com/9781447174523

DOI: 10.1007/978-1-4471-7452-3_18

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-1-4471-7452-3_18