EconPapers    
Economics at your fingertips  
 

Neurofuzzy Systems

Ke-Lin Du () and M. N. S. Swamy
Additional contact information
Ke-Lin Du: Concordia University, Department of Electrical and Computer Engineering
M. N. S. Swamy: Concordia University, Department of Electrical and Computer Engineering

Chapter Chapter 27 in Neural Networks and Statistical Learning, 2019, pp 803-828 from Springer

Abstract: Abstract Hybridization of fuzzy logic and neural networks yields neurofuzzy systems, which capture the merits of both paradigms. This chapter first describes how to extract rules from neural networks and data, and then introduces how the synergy of fuzzy logic and neural network paradigms is implemented.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4471-7452-3_27

Ordering information: This item can be ordered from
http://www.springer.com/9781447174523

DOI: 10.1007/978-1-4471-7452-3_27

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4471-7452-3_27