EconPapers    
Economics at your fingertips  
 

Clustering I: Basic Clustering Models and Algorithms

Ke-Lin Du () and M. N. S. Swamy
Additional contact information
Ke-Lin Du: Concordia University, Department of Electrical and Computer Engineering
M. N. S. Swamy: Concordia University, Department of Electrical and Computer Engineering

Chapter Chapter 9 in Neural Networks and Statistical Learning, 2019, pp 231-274 from Springer

Abstract: Abstract Clustering is an unsupervised classification technique that identifies some inherent structure present in a set of objects based on a similarity measure. Clustering methods can be derived from statistical models or competitive learning and correspondingly they can be classified into generative (or model-based) and discriminative (or similarity-based) approaches. A clustering problem can also be modeled as a COP. Clustering neural networks are statistical models, where a probability density function (pdf) for data is estimated by learning its parameters. In this chapter, our emphasis is placed on a number of competitive learning-based neural networks and clustering algorithms. We describe the SOM, learning vector quantizationVector quantization (LVQ), and ART models, as well as C-means, subtractive, and fuzzy clustering algorithms.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4471-7452-3_9

Ordering information: This item can be ordered from
http://www.springer.com/9781447174523

DOI: 10.1007/978-1-4471-7452-3_9

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-1-4471-7452-3_9