EconPapers    
Economics at your fingertips  
 

Mixed Boundary Value Problem with Two Displacement Boundaries for Thin Plate Bending

Norio Hasebe and Masahiro Miwa

Chapter 15 in Integral Methods in Science and Engineering, 2002, pp 99-104 from Springer

Abstract: Abstract In this paper, the general solution for the mixed boundary value problem with two external force boundaries and two displacement boundaries is described. Rational mapping and complex stress functions are used for the analysis. The problem with two displacement boundaries is mathematically more difficult to solve than that with one displacement boundary because integral constants (C 1, C 2, C 3in (15.2)) appear and must be determined. Also, the Plemelj function used is more complicated than that of the latter. A mixed boundary value problem for thin plate bending of arbitrary shapes, for example, a half plane with one clamped boundary under out-of-plane loading, has been analyzed [1]. Developing it into the problem with two clamped boundaries is very useful for wide applicability to more complicated structural analysis. As an application of the solution, a semi-infinite plate with two clamped edges within a semi-elliptic notch under uniform bending (see Fig. 15.2) is analyzed. Analysis of a problem for one clamped boundary on a semi-elliptic notch on a semi-infinite plate was reported in [2].

Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0111-3_15

Ordering information: This item can be ordered from
http://www.springer.com/9781461201113

DOI: 10.1007/978-1-4612-0111-3_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4612-0111-3_15