EconPapers    
Economics at your fingertips  
 

Comparison of Zonal, Spectral Solutions for Compressible Boundary Layer and Navier—Stokes Equations

Adriana Nastase

Chapter 31 in Integral Methods in Science and Engineering, 2002, pp 197-202 from Springer

Abstract: Abstract In this chapter, the author’s zonal, spectral solutions for the partial differential equations (PDE) of the three-dimensional stationary, compressible boundary layer (CBL) given as in [1]–[3] for the computation of the flow over flattened, flying configurations (FC) are now extended to the Navier-Stokes layer (NSL). If $$ \eta = \left( {{x_3} - Z\left( {{x_1},{x_2}} \right)} \right)/\delta \left( {{x_1},{x_2}} \right) $$ is a new coordinate, the spectral forms of the axial, lateral, and vertical velocity components $$ {u_{\delta }},{v_{\delta }}, and w\delta $$ , of the density function $$ R = \ln \rho $$ and of the absolute temperature T (31.1)—(31.5) and their nine boundary conditions (31.6)-(31.14), at the NSL-edge $$ \left( {\eta = 1} \right) $$ , are 31.1 $$ {u_{\delta }} = {u_e}\sum\limits_{{i = 1}}^N {{u_i}{\eta^i}}, $$ , 31.2 $$ {v_{\delta }} = {v_e}\sum\limits_{{i = 1}}^N {{v_i}{\eta^i}} $$ , 31.3 $$ {w_{\delta }} = {w_e}\sum\limits_{{i = 1}}^N {{w_i}{\eta^i}} $$ , 31.4 $$ R = {R_w} + \left( {{R_e} - {R_w}} \right)\sum\limits_{{i = 1}}^N {{r_i}{\eta^i}} $$ , 31.5 $$ T = {T_w} + \left( {{T_e} + {T_w}} \right)\sum\limits_{{i = 1}}^N {{t_i}{\eta^i}} $$ , 31.6 $$ {u_{{N - 2}}} = {\alpha_{{0,N - 2}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 2}}}{u_i}} $$ , 31.7 $$ {v_{{N - 2}}} = {\alpha_{{0,N - 2}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 2}}}{v_i}} $$ , 31.8 $$ {u_{{N - 1}}} = {\alpha_{{0,N - 1}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 1}}}{u_i}} $$ , 31.9 $$ {v_{{N - 1}}} = {\alpha_{{0,N - 1}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N - 1}}}{v_i}} $$ , 31.10 $$ {u_N} = {\alpha_{{0,N}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N}}}{u_i}} $$ , 31.11 $$ {v_N} = {\alpha_{{0,N}}} + \sum\limits_{{i = 1}}^{{N - 3}} {{\alpha_{{i,N}}}{v_i}} $$ , 31.12 $$ {w_N} = {\gamma_{{0,N}}} + \sum\limits_{{i = 1}}^n {{\gamma_{{i,N}}}{w_i}} $$ , 31.13 $$ \sum\limits_{{i = 1}}^N {{r_i} = 1} $$ , 31.14 $$ \sum\limits_{{i = 1}}^N {{t_i} = 1} $$ .

Keywords: Supersonic Flow; Potential Flow; Spectral Form; Hinge Line; Optimal Shape Design (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0111-3_31

Ordering information: This item can be ordered from
http://www.springer.com/9781461201113

DOI: 10.1007/978-1-4612-0111-3_31

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-1-4612-0111-3_31