EconPapers    
Economics at your fingertips  
 

Integral Equations Arising in Boundary Value Problems at Resonance

Seppo Seikkala and Dmitri Vorobiev

Chapter 35 in Integral Methods in Science and Engineering, 2002, pp 221-226 from Springer

Abstract: Abstract Let $$ L:{H^2}\left( {0,1} \right) \to {L_2}\left( {0,1} \right) $$ be a formally self-adjoint second-order linear differential operator $$Lu = (pu\prime )\prime + qu,$$ , where $$ p \in {C^2}\left[ {0,1} \right],p(x) \ne 0,0 \leqslant x \leqslant 1 $$ , and $$ q \in C\left[ {0,1} \right] $$ . We shall consider the boundary value problem 1 $$\begin{array}{*{20}{c}} {Lu(t) = f(t,u(t),u\prime (t))} & {a.e. in J = [0,1],} \\ {{{B}_{i}}u = {{d}_{i}},} & {i = 1,2,} \\ \end{array}$$ where $$ f:J \times {R^2} \to R $$ is square integrable for every $$ u \in {H^2}\left( {0,1} \right) $$ and the boundary conditions are either separated, or mixed, that is, $${{\begin{array}{*{20}{c}} {{{B}_{1}}u = {{a}_{0}}u(0) + {{b}_{0}}u\prime (0) = {{d}_{1}},} & {{{B}_{2}}u = {{a}_{1}}u(1) + {{b}_{1}}u\prime (1) = d} \\ \end{array} }_{2}},$$ , or $${{\begin{array}{*{20}{c}} {{{B}_{1}}u = {{a}_{0}}u(0) + {{b}_{0}}u(1) = {{d}_{1}},} & {{{B}_{2}}u = {{a}_{1}}u\prime (0) + {{b}_{1}}u\prime (1) = d} \\ \end{array} }_{2}}.$$

Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0111-3_35

Ordering information: This item can be ordered from
http://www.springer.com/9781461201113

DOI: 10.1007/978-1-4612-0111-3_35

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4612-0111-3_35