EconPapers    
Economics at your fingertips  
 

Exponential Functionals of Lévy Processes

Philippe Carmona (), Frédérique Petit () and Marc Yor ()
Additional contact information
Philippe Carmona: Université Paul Sabatier, Laboratoire de Statistique et Probabilités
Frédérique Petit: Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Casier 188
Marc Yor: Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Casier 188

A chapter in Lévy Processes, 2001, pp 41-55 from Springer

Abstract: Abstract The distribution of the terminal value A∞ of the exponential functional $$ {A_t}(\xi ) = \smallint _0^t{e^{{\xi _s}}}ds $$ of a Lévy process (ξ t ) t≥0 plays an important role in Mathematical Physics and Mathematical Finance. We show how this distribution can be computed by means of Lamperti’s transformation and generalized Ornstein-Uhlenbeck processes.

Keywords: Brownian Motion; Infinitesimal Generator; Compound Poisson Process; Semistable Markov Process; Asian Option (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0197-7_2

Ordering information: This item can be ordered from
http://www.springer.com/9781461201977

DOI: 10.1007/978-1-4612-0197-7_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-13
Handle: RePEc:spr:sprchp:978-1-4612-0197-7_2