Exponential Functionals of Lévy Processes
Philippe Carmona (),
Frédérique Petit () and
Marc Yor ()
Additional contact information
Philippe Carmona: Université Paul Sabatier, Laboratoire de Statistique et Probabilités
Frédérique Petit: Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Casier 188
Marc Yor: Université Paris VI, Laboratoire de Probabilités et Modèles Aléatoires, Casier 188
A chapter in Lévy Processes, 2001, pp 41-55 from Springer
Abstract:
Abstract The distribution of the terminal value A∞ of the exponential functional $$ {A_t}(\xi ) = \smallint _0^t{e^{{\xi _s}}}ds $$ of a Lévy process (ξ t ) t≥0 plays an important role in Mathematical Physics and Mathematical Finance. We show how this distribution can be computed by means of Lamperti’s transformation and generalized Ornstein-Uhlenbeck processes.
Keywords: Brownian Motion; Infinitesimal Generator; Compound Poisson Process; Semistable Markov Process; Asian Option (search for similar items in EconPapers)
Date: 2001
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0197-7_2
Ordering information: This item can be ordered from
http://www.springer.com/9781461201977
DOI: 10.1007/978-1-4612-0197-7_2
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().