EconPapers    
Economics at your fingertips  
 

The Legendre Relation for Elliptic Integrals

Peter Duren
Additional contact information
Peter Duren: University of Michigan, Department of Mathematics

A chapter in PAUL HALMOS Celebrating 50 Years of Mathematics, 1991, pp 305-315 from Springer

Abstract: Abstract In standard notation, the complete elliptic integrals of the first and second kinds are $$ \begin{gathered} K = K(k) = \int_{0}^{{\pi /2}} {\frac{{d\theta }}{{\sqrt {{1 - {{k}^{2}}{{{\sin }}^{2}}\theta }} }}} \hfill \\ = \int_{0}^{1} {\frac{{dt}}{{\sqrt {{1 - {{t}^{2}}}} \sqrt {{1 - {{k}^{2}}{{t}^{2}}}} }}} \hfill \\ \end{gathered} $$ and $$ \begin{gathered} E = E(k) = \int_{0}^{{\pi /2}} {\sqrt {{1 - {{k}^{2}}{{{\sin }}^{2}}\theta d\theta }} } \hfill \\ = \int_{0}^{1} {\frac{{\sqrt {{1 - {{k}^{2}}{{t}^{2}}}} }}{{\sqrt {{1 - {{t}^{2}}}} }}dt.} \hfill \\ \end{gathered} $$

Keywords: Elliptic Function; Theta Function; Elliptic Integral; Complete Elliptic Integral; Distinct Complex Number (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-0967-6_32

Ordering information: This item can be ordered from
http://www.springer.com/9781461209676

DOI: 10.1007/978-1-4612-0967-6_32

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-1-4612-0967-6_32