EconPapers    
Economics at your fingertips  
 

Chaotic Contact Bifurcations

Ralph H. Abraham, Laura Gardini and Christian Mira
Additional contact information
Ralph H. Abraham: University of California Santa Cruz
Laura Gardini: Universitá di Urbino, Instituto di Scienze Economiche
Christian Mira: Institut National des Sciences Appliquees de Toulouse, Dept. of Control Engineering

Chapter Chapter 7 in Chaos in Discrete Dynamical Systems, 1997, pp 117-150 from Springer

Abstract: Abstract Chaotic contact bifurcations involve a chaotic attractor. This is the pinnacle of our subject. Here we proceed with a 1D introduction, and a 2D introduction, before analyzing the exemplary bifurcation sequence.

Date: 1997
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-1936-1_7

Ordering information: This item can be ordered from
http://www.springer.com/9781461219361

DOI: 10.1007/978-1-4612-1936-1_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4612-1936-1_7