EconPapers    
Economics at your fingertips  
 

Minimal Bases and g-Adic Representations of Integers

Xing- De Jia
Additional contact information
Xing- De Jia: Southwest Texas State University, Department of Mathematics

Chapter 15 in Number Theory: New York Seminar 1991–1995, 1996, pp 201-209 from Springer

Abstract: Abstract Let A be a set of integers, h ≥ 2 an integer. Let hA denote the set of all sums of h elements of A. If hA contains all sufficiently large integers, then A is called an asymptotic basis of order h. An asymptotic basis A of order h is said to be minimal if it contains no proper subset which is again an asymptotic basis of order h. This concept of minimality of bases was first introduced by Stöhr [5]. Härtter [1] showed the existence of minimal asymptotic bases by a nonconstructive argument. Nathanson [3] constructed the first nontrivial example of minimal asymptotic bases of order h ≥ 2. Jia and Nathanson [2] recently discovered a simple construction of minimal asymptotic bases of order h ≥ 2 by using powers of 2. Furthermore, for any α: 1/h ≤; α

Date: 1996
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-2418-1_15

Ordering information: This item can be ordered from
http://www.springer.com/9781461224181

DOI: 10.1007/978-1-4612-2418-1_15

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-1-4612-2418-1_15