EconPapers    
Economics at your fingertips  
 

The Exponential Function

Gerhard P. Hochschild
Additional contact information
Gerhard P. Hochschild: University of California, Department of Mathematics

Chapter Chapter VII in Perspectives of Elementary Mathematics, 1983, pp 79-92 from Springer

Abstract: Abstract Let z denote the identity map on C. For every non-negative integer n, we define a polynomial function E n by $$ {E_n} = \sum\limits_{{k = 0}}^n {\frac{1}{{k!}}{z^k}} $$ Given an arbitrary complex number c, let n be such that n + 1 ≧ 2|c|, and let q be an arbitrary positive integer. Then we have $$\begin{array}{*{20}{c}} {\left| {{E_{n + q}}\left( c \right) - {E_n}\left( c \right)} \right|\underline \leqslant \sum\limits_{k = 1}^q {\frac{1}{{\left( {n + k} \right)!}}{{\left| c \right|}^{n + k}}} } \\ {\underline \leqslant \frac{{{{\left| c \right|}^{n + 1}}}}{{\left( {n + 1} \right)!}}\sum\limits_{k = 1}^q {{{\left( {\frac{{\left| c \right|}}{{n + 1}}} \right)}^{k - 1}}} } \\ {\underline \leqslant 2\frac{{{{\left| c \right|}^{n + 1}}}}{{\left( {n + 1} \right)!}}} \end{array}$$ This shows that the sequence (E n (c)) n =0, 1,... is a Cauchy sequence of complex numbers. For every complex number c, we define the complex number exp(c) as the limit of this Cauchy sequence. The function exp from C to C so defined is the exponential function.

Date: 1983
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4612-5567-3_7

Ordering information: This item can be ordered from
http://www.springer.com/9781461255673

DOI: 10.1007/978-1-4612-5567-3_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-08
Handle: RePEc:spr:sprchp:978-1-4612-5567-3_7