EconPapers    
Economics at your fingertips  
 

Sphere Packings, II

T. C. Hales
Additional contact information
T. C. Hales: University of Michigan, Department of Mathematics

Chapter 11 in The Kepler Conjecture, 2011, pp 433-449 from Springer

Abstract: Abstract An earlier paper describes a program to prove the Kepler conjecture on sphere packings. This paper carries out the second step of that program. A sphere packing leads to a decomposition of ℝ3 into polyhedra. The polyhedra are divided into two classes. The first class of polyhedra, called quasi-regular tetrahedra, have density at most that of a regular tetrahedron. The polyhedra in the remaining class have density at most that of a regular octahedron (about 0.7209).

Date: 2011
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4614-1129-1_11

Ordering information: This item can be ordered from
http://www.springer.com/9781461411291

DOI: 10.1007/978-1-4614-1129-1_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4614-1129-1_11