A Combination of Algebraic Multigrid Algorithms with the Conjugate Gradient Technique
Qianshun Chang () and
Zhaohui Huang ()
Additional contact information
Qianshun Chang: Chinese Academy of Sciences, Academy of Mathematics and System Sciences
Zhaohui Huang: Chinese Academy of Sciences, Academy of Mathematics and System Sciences
A chapter in Recent Progress in Computational and Applied PDES, 2002, pp 101-111 from Springer
Abstract:
Abstract In this paper, conjugate gradient acceleration of algebraic multigrid methods (AMGCG) is described. Theoretical analysis and numerical experiments demonstrate that iterant recombination increases the efficiency and robustness of algebraic multigrid methods. To judge the performance of AMGCG, we not only focus on its convergence behavior, but also take both computing times and memory requirement into account.
Keywords: algebraic multigrid; preconditioned conjugate gradient; iterant recombination; convergence (search for similar items in EconPapers)
Date: 2002
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4615-0113-8_6
Ordering information: This item can be ordered from
http://www.springer.com/9781461501138
DOI: 10.1007/978-1-4615-0113-8_6
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().