Are There Functions Defining Prime Numbers?
Paulo Ribenboim
Additional contact information
Paulo Ribenboim: Queen’s University, Department of Mathematics and Statistics
Chapter Chapter 3 in The Book of Prime Number Records, 1988, pp 129-152 from Springer
Abstract:
Abstract To determine prime numbers, it is natural to ask for functions f(n) defined for all natural numbers n ≥ 1, which are computable in practice and produce some or all prime numbers.
Keywords: Prime Number; Class Number; Diophantine Equation; Algebraic Integer; Quadratic Field (search for similar items in EconPapers)
Date: 1988
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4684-9938-4_4
Ordering information: This item can be ordered from
http://www.springer.com/9781468499384
DOI: 10.1007/978-1-4684-9938-4_4
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().