EconPapers    
Economics at your fingertips  
 

Fourier Series of Finite Power Periodic Signals

Pierre Brémaud ()
Additional contact information
Pierre Brémaud: École Polytechnique Fédérale de Lausanne

Chapter C4 in Mathematical Principles of Signal Processing, 2002, pp 161-166 from Springer

Abstract: Abstract Let us consider the Hilbert space ℓ ℂ 2 of complex sequences a = {a n }, n ∈ ℤ, such that $${\sum\nolimits_{n \in \mathbb{Z}} {|{a_n}|} ^2} \prec \infty $$ with the Hermitian product (43) $${\left\langle {a,b} \right\rangle _{l_\mathbb{C}^2}} = \sum\limits_{n \in \mathbb{Z}} {{a_n}b_n^*} $$ and the Hilbert space L ℂ 2 ([0, T], dt/T) of complex signals x = {x(t)}, t ∈ ℝ, such that $$\int_0^T {{{\left| {x(t)} \right|}^2}dt}

Date: 2002
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4757-3669-4_11

Ordering information: This item can be ordered from
http://www.springer.com/9781475736694

DOI: 10.1007/978-1-4757-3669-4_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4757-3669-4_11