EconPapers    
Economics at your fingertips  
 

The “normalized radical” of the ℳ-set

Benoit B. Mandelbrot
Additional contact information
Benoit B. Mandelbrot: Yale University, Mathematics Department

Chapter C7 in Fractals and Chaos, 2004, pp 100-109 from Springer

Abstract: Abstract A “normalized radical” ℛ of the ℳ-set is defined as the shape that satisfies exactly all the self-similarity properties that hold approximately for the molecules of the ℳ-set of the quadratic map. Explicit constructions show that the complement of ℛ is a σ-lune, and prove that the ℛ-set does not self-overlap. The fractal dimension D of the boundary of ℛ is shown to satisfy % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaaeWaWdaeaapeGaeuOPdyKaaiikaiaad6gacaGGPaGaamOBa8aa % daahaaWcbeqaa8qacqGHsislcaaIYaGaamiraaaakiabg2da9iaaig % daaSWdaeaapeGaaGOmaaWdaeaapeGaeyOhIukaniabggHiLdaaaa!43E2! $$ \sum\nolimits_2^\infty {\Phi (n){n^{ - 2D}} = 1} $$ , where Φ(n) is Euler’s number-theoretic function. A rough first approximation is the solution D = 1.239375 of the equation % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaaeWaWdaeaapeGaamOBa8aadaahaaWcbeqaaiaaigdacqGHsisl % caaIYaGaamiraaaak8qacqGH9aqpcqaH2oGEcaGGOaGaaGOmaiaads % eacqGHsislcaaIXaGaaiykaiabgkHiTiaaigdacqGH9aqpcqaHapaC % daahaaWcbeqaaiaaikdaaaGccaGGVaGaaGOnaaWcpaqaa8qacaaIYa % aapaqaa8qacqGHEisPa0GaeyyeIuoaaaa!4D30! $$ \sum\nolimits_2^\infty {{n^{1 - 2D}} = \zeta (2D - 1) - 1 = {\pi ^2}/6} $$ , where ζ is the Riemann zeta function. A less elegant but doubtless closer second approximation is D=1.234802. The same D applies to the ℳ-sets of other maps in the same class of universality. Interesting “rank-size” probability distributions are introduced.

Keywords: Fractal Dimension; Generation Atom; Hausdorff Measure; Riemann Zeta Function; Closed Disc (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4757-4017-2_7

Ordering information: This item can be ordered from
http://www.springer.com/9781475740172

DOI: 10.1007/978-1-4757-4017-2_7

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-1-4757-4017-2_7