EconPapers    
Economics at your fingertips  
 

Deterioration processes

Mohamed Abdel-Hameed
Additional contact information
Mohamed Abdel-Hameed: University of North Carolina and Kuwait University, Department of Mathematics

A chapter in Semi-Markov Models, 1986, pp 231-252 from Springer

Abstract: Abstract In reliability studies, the question of assessing the behavior of the failure rate of a given device often arises. In practice, it is assumed that the life length of the device has a certain distribution, such as exponential, Weibull, gamma, or that its life length belongs to a given family of distributions, such as increasing failure rate, increasing failure rate average. Based on field data collected about the failure times of identical devices optimal estimates of the failure rate are obtained and hypothesis testing for the parameters of the assumed distribution function are carried out. In many cases collecting enough data for sound statistical conclusions to be drawn is not possible either because of prohibitive cost or insufficient time available to observe all failure times of items on test. Even if enough data can be collected, the validity of the inference procedures are questionable due to the sometimes unfounded but necessary assumptions that must be imposed concerning the distribution function of the failure time. One way to avoid the above difficulties is to examine the failure mechanism of the given device and thus determine in a proper fashion the form of its distribution function. In this paper we concern ourselves with deterioration models, and we discuss three such models. In the first model a device is subject to damage and wear. The damage is assumed to be an increasing strong Markov pure jump process and the wear occurs at a constant rate. This amounts to saying that damage occurs because of shocks and that the times and magnitudes of shocks form a Poisson random measure on R+ × (0,∞) and the rate of wear is a constant a > 0. We call this model Pure Jump Damage Process With Drift. The second model differs from the first in one regard: between shocks the device wears at a rate which is equal to the damage accumulated right before the occurrence of the shock. For example, between the first and second shock the device fails at a constant rate which is equal to the left hand limit of the damage level at the time of occurrence of the first shock. We call this model Deterioration Processes With Wear Depending On Damage Level. The third model differs drastically from the first two. In this model, the deterioration process is assumed to be a Markov additive process (X,Z). The process X = (Xt) describes the state of the environment, and the increasing process Z = (Zt) describes the accumulated deterioration the device suffers. The process Z has conditionally independent increments given the paths of the environment process. In all three models, the device is assumed to have a threshold and it fails once the accumulated deterioration exceeds or is equal to the threshold. We study life distribution properties of such devices and the effect of the parameters of the deterioration process on the failure rate.

Keywords: Failure Rate; Failure Time; Damage Function; Wear Process; Deterioration Process (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-0574-1_13

Ordering information: This item can be ordered from
http://www.springer.com/9781489905741

DOI: 10.1007/978-1-4899-0574-1_13

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4899-0574-1_13