EconPapers    
Economics at your fingertips  
 

Estimation theory for multitype branching processes

Søren Asmussen
Additional contact information
Søren Asmussen: University of Copenhagen, Institute of Mathematical Statistics

A chapter in Semi-Markov Models, 1986, pp 385-395 from Springer

Abstract: Abstract We consider a p-type Galton-Watson process % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaGadaWdaeaapeGaamOwa8aadaWgaaWcbaWdbiaad6gaa8aabeaa % aOWdbiaawUhacaGL9baapaWaaSbaaSqaa8qacaWGUbGaeyicI4SaeS % yfHukapaqabaaaaa!3EE7! $$ {\left\{ {{Z_n}} \right\}_{n \in {\Bbb N}}}$$ i.e. Zn= (Zn(1)...Zn((p)), % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOwamaaBa % aaleaacaWGUbaabeaakiabg2da9maabmaabaGaamOwamaaBaaaleaa % caWGUbaabeaakmaabmaabaGaaGymaaGaayjkaiaawMcaaiablAcilj % aadQfadaWgaaWcbaGaamOBaaqabaGcdaqadaqaaiaadchaaiaawIca % caGLPaaaaiaawIcacaGLPaaacaGGSaGaaGjbVlaadQfadaWgaaWcba % GaamOBaiabgUcaRiaaigdaaeqaaOGaeyypa0ZaaCbmaeaacqqHJoWu % aSqaaiaadMgacqGH9aqpcaWGSbaabaGaamiCaaaakmaaxadabaGaeu % 4OdmfaleaacaWGRbGaeyypa0JaamiBaaqaaiaadQfadaWgaaadbaGa % amOBaaqabaWcdaqadaqaaiaadMgaaiaawIcacaGLPaaaaaGccaWGAb % Waa0baaSqaaiaad6gacaGGSaGaam4AaaqaamaabmaabaGaamyAaaGa % ayjkaiaawMcaaaaaaaa!608B! $$ {Z_n} = \left( {{Z_n}\left( 1 \right) \ldots {Z_n}\left( p \right)} \right),\;{Z_{n + 1}} = \mathop \Sigma \limits_{i = l}^p \mathop \Sigma \limits_{k = l}^{{Z_n}\left( i \right)} Z_{n,k}^{\left( i \right)}$$ where the % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWGAbWdamaaBaaaleaapeGaamOBaiabgUcaRiaaigdaa8aabeaa % k8qacqGH9aqppaWaaCbmaeaapeGaeu4Odmfal8aabaWdbiaadMgacq % GH9aqpcaaIXaaapaqaa8qacaWGWbaaaOWdamaaxadabaWdbiabfo6a % tbWcpaqaa8qacaWGRbGaeyypa0JaaGymaaWdaeaapeGaamOwa8aada % WgaaadbaWdbiaad6gaa8aabeaal8qadaqadaWdaeaapeGaamyAaaGa % ayjkaiaawMcaaaaakiaadQfapaWaa0baaSqaa8qacaWGUbGaaiilai % aadUgaa8aabaWdbmaabmaapaqaa8qacaWGPbaacaGLOaGaayzkaaaa % aaaa!5129! $$ {Z_{n + 1}} = \mathop \Sigma \limits_{i = 1}^p \mathop \Sigma \limits_{k = 1}^{{Z_n}\left( i \right)} Z_{n,k}^{\left( i \right)}$$ are independent for all n, i, k and with the same distribution for any fixed i.

Keywords: Maximum Likelihood Estimator; Asymptotic Property; Estimation Theory; Type Vector; Jordan Canonical Form (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-0574-1_21

Ordering information: This item can be ordered from
http://www.springer.com/9781489905741

DOI: 10.1007/978-1-4899-0574-1_21

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4899-0574-1_21