EconPapers    
Economics at your fingertips  
 

Homoclinic Points Cr-Created under Hypotheses by Probability Measures

Nobuo Aoki and Masatoshi Oka
Additional contact information
Nobuo Aoki: Tokyo Metropolitan University, Department of Mathemtics
Masatoshi Oka: Science University of Tokyo, Department of Mathematics

A chapter in Probability Measures on Groups X, 1991, pp 1-9 from Springer

Abstract: Abstract Let M be a closed manifold and f: M → M be a Cr diffeomor-phism. Let p ∈ M be a hyperbolic fixed point of f. Then the stable and unstable sets of p are denoted respectively by % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa % qaaiaadEfadaahaaWcbeqaaiaadofaaaGcdaqadaqaaiaadchaaiaa % wIcacaGLPaaacqGH9aqpdaGadaqaaiaadIhadaabbaqaamaaxababa % GaciiBaiaacMgacaGGTbaaleaacaWGUbGaeyOKH4QaeyOhIukabeaa % aOGaay5bSdGaamizamaabmaabaGaamOzamaaCaaaleqabaGaamOBaa % aakmaabmaabaGaamiEaaGaayjkaiaawMcaaiaacYcacaWGWbaacaGL % OaGaayzkaaGaeyypa0JaaGimaaGaay5Eaiaaw2haaaqaaiaadEfada % ahaaWcbeqaaiaadwhaaaGcdaqadaqaaiaadchaaiaawIcacaGLPaaa % cqGH9aqpdaGadaqaaiaadIhadaWfqaqaamaaeeaabaGaciiBaiaacM % gacaGGTbaacaGLhWoaaSqaaiaad6gacqGHsgIRcqGHEisPaeqaaOGa % amizamaabmaabaGaamOzamaaCaaaleqabaGaeyOeI0IaamOBaaaakm % aabmaabaGaamiEaaGaayjkaiaawMcaaiaacYcacaWGWbaacaGLOaGa % ayzkaaGaeyypa0JaaGimaaGaay5Eaiaaw2haaaaaaaa!6F1C! $$ \begin{array}{*{20}{c}} {{W^S}\left( p \right) = \left\{ {x\left| {\mathop {\lim }\limits_{n \to \infty } } \right.d\left( {{f^n}\left( x \right),p} \right) = 0} \right\}} \\ {{W^u}\left( p \right) = \left\{ {x\mathop {\left| {\lim } \right.}\limits_{n \to \infty } d\left( {{f^{ - n}}\left( x \right),p} \right) = 0} \right\}} \\ \end{array} $$ which are Cr injectively immersed submanifolds of M. The points of intersection of the closure of Ws(p) with Wu(p) or of the closure of Wu(p) with Ws(p), different from p, is called almost homoclinic points to p.

Keywords: Probability Measure; Unstable Manifold; Closed Manifold; Orbit Structure; Homoclinic Point (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2364-6_1

Ordering information: This item can be ordered from
http://www.springer.com/9781489923646

DOI: 10.1007/978-1-4899-2364-6_1

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-29
Handle: RePEc:spr:sprchp:978-1-4899-2364-6_1