EconPapers    
Economics at your fingertips  
 

A New Proof of the Central Limit Theorem on Stratified Lie Groups

Gyula Pap
Additional contact information
Gyula Pap: Lajos Kossuth University, Mathematical Institute

A chapter in Probability Measures on Groups X, 1991, pp 329-336 from Springer

Abstract: Abstract Let G be a stratified Lie group of step s, that is a simply connected nilpotent Lie group whose Lie algebra g has a vector space decomposition % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiabg2 % da9iabgwPifpaaDaaaleaacaWGQbGaeyypa0JaaGymaaqaaiaadMga % aaGccaWGwbWaaSbaaSqaaiaadQgaaeqaaaaa!3FB7! $$ g = \oplus _{j = 1}^i{V_j}\ $$ such that [V i , V j] ⊂ V i+j when i + j > s and [V i, V j] = 0 when i + j > s, and V 1 generates g as an algebra. Let exp: g → G be the exponential mapping (which is now a diffeomorphism). We equip g as well as G with the natural dilations by extending % MathType!MTEF!2!1!+- % feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaCbiaeaacq % aH0oazdaWgaaWcbaGaamiDaaqabaaabeqaaiaad+gaaaGccaGGOaGa % amiwaiaacMcacqGH9aqpcaWG0bWaaWbaaSqabeaacaWGPbaaaOGaam % iwaaaa!4030! $$ \mathop {{\delta _t}}\limits^o (X) = {t^i}X $$ , t > 0, X ∊ V j by linearity to g and putting % MathType!MTEF!2!1!+- % feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiTdq2aaS % baaSqaaiaacIcacaWG0bGaaiykaaqabaGccaGGOaGaciyzaiaacIha % caGGWbGaamiwaiaacMcacqGH9aqpciGGLbGaaiiEaiaacchacaGGOa % WaaCbiaeaacqaH0oazdaWgaaWcbaGaamiDaaqabaGccaWGybaaleqa % baGaam4BaaaakiaacMcaaaa!4963! $$ {\delta _{(t)}}(\exp X) = \exp (\mathop {{\delta _t}X}\limits^o ) $$ . The family (δt)t>0 is a continuous one-parameter semigroup of automorphisms of G.

Keywords: Stratified Lie groups; Gauss and Poisson semigroups of measures on Lie groups (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2364-6_25

Ordering information: This item can be ordered from
http://www.springer.com/9781489923646

DOI: 10.1007/978-1-4899-2364-6_25

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-1-4899-2364-6_25