EconPapers    
Economics at your fingertips  
 

Permutation Operators and the Central Limit Theorem Associated with Partial Differential Operators / Operateurs de Permutation et Theoreme de la Centrale Associes a des Operateurs aux Derivees Partielles

Khalifa Trimèche
Additional contact information
Khalifa Trimèche: Campus Universitaire, Faculté des Sciences de Tunis, Département de Mathématiques

A chapter in Probability Measures on Groups X, 1991, pp 395-424 from Springer

Abstract: Abstract For the differential operators % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB % LrhDaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFf % ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aenaaBa % aaleaacaaIXaaabeaakiaacQdacqGH9aqpdaWcbaWcbaGaeyOaIyla % baGaeyOaIyRaamiEaaaaaaa!3E05! $$ {\Delta _1}: = {\textstyle{\partial \over {\partial x}}} $$ and % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB % LrhDaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFf % ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgs5aenaaBa % aaleaacaaIYaaabeaakiaacQdacqGH9aqpdaWcbaWcbaGaeyOaIy7a % aWbaaWqabeaacaaIYaaaaaWcbaGaeyOaIyRaamiEamaaCaaameqaba % GaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaikdacqaHXoqycqGHRaWk % caaIXaaabaGaamOCaaaadaWcaaqaaiabgkGi2cqaaiabgkGi2kaadk % haaaGaeyOeI0YaaSqaaSqaaiabgkGi2oaaCaaameqabaGaaGOmaaaa % aSqaaiabgkGi2kaadIhadaahaaadbeqaaiaaikdaaaaaaaaa!5054! $$ {\Delta _2}: = {\textstyle{{{\partial ^2}} \over {\partial {x^2}}}} + \frac{{2\alpha + 1}}{r}\frac{\partial }{{\partial r}} - {\textstyle{{{\partial ^2}} \over {\partial {x^2}}}} $$ on ℝ and IR + × ×IR respectively (α∈IR+) one introduces the corresponding permutation operators ℝα and tℝα commuting with the operators Δ1 and % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDhariqtHjhB % LrhDaibaieYlf9irVeeu0dXdh9vqqj-hEeeu0xXdbba9frFj0-OqFf % ea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs0dXdbPYxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaaleaaleaacq % GHciITdaahaaadbeqaaiaaikdaaaaaleaacqGHciITcaWG4bWaaWba % aWqabeaacaaIYaaaaaaaaaa!3BC8! $$ {\textstyle{{{\partial ^2}} \over {\partial {x^2}}}} $$ respectively. The paper is concerned with problems of harmonic analysis related to the operators Δ1 and Δ2 such as generalized Fourier transforms, Plancherel and Paley-Wiener theorems, generalized translation operators, and products of generalized convolution structures. Within this general framework a central limit theorem is proved. More precisely, sufficient conditions in terms of moments up to the fourth order are given for a triangular system of probability measures on IR + × to converge weakly towards the Gaussian distribution on IR + × . The main results can be considered as contributions to the analysis and probability theory on two-dimensional hypergroups. The French text follows.

Keywords: Partial Differential Operator; Permutation Operator; Generalize Translation Operator; Fourier Generalisee (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2364-6_30

Ordering information: This item can be ordered from
http://www.springer.com/9781489923646

DOI: 10.1007/978-1-4899-2364-6_30

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-21
Handle: RePEc:spr:sprchp:978-1-4899-2364-6_30