EconPapers    
Economics at your fingertips  
 

Semigroup Rings of Completely Regular Semigroups

W. D. Munn
Additional contact information
W. D. Munn: University of Glasgow, Department of Mathematics

A chapter in Lattices, Semigroups, and Universal Algebra, 1990, pp 191-201 from Springer

Abstract: Abstract A semigroup S is said to be completely regular if and only if it is covered by its subgroups; that is, if and only if, for each a ∈ S, a ∈ a2 S∩S a2. Groups and bands (semigroups of idempotents) are extreme special cases. In this paper a survey is given of results on the Jacobson radical of the semigroup ring of a completely regular semigroup over a ring with unity. Much of the inspiration is derived from the study of group rings, in which a similar interplay of two distinct branches of algebra is apparent. The work discussed covers a period of some thirty- six years, from the first paper on semigroup rings by Marianne Teissier (1952) to the present day.

Date: 1990
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-2608-1_21

Ordering information: This item can be ordered from
http://www.springer.com/9781489926081

DOI: 10.1007/978-1-4899-2608-1_21

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-1-4899-2608-1_21