Multiple Regression
G. Barrie Wetherill
Additional contact information
G. Barrie Wetherill: Bath University of Technology
Chapter Chapter Eleven in Elementary Statistical Methods, 1972, pp 245-262 from Springer
Abstract:
Abstract The theory discussed in the previous chapter is readily extended to cover the case of regression on any number of variables. The theory of least squares provides estimates of unknown parameters, tests of significance, etc., and the methods are relatively simple provided the model can be expressed in the form (11.1) % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiGaaqaabe % qaaiaadweacaGGOaGaamyEaiaacMcacqGH9aqpcqaHXoqycqGHRaWk % cqaHYoGydaWgaaWcbaGaaGymaaqabaGccaGGOaGaamiEamaaBaaale % aacaaIXaaabeaakiabgkHiTiqadIhagaqeaiaacMcacqGHRaWkcqaH % YoGydaWgaaWcbaGaaGOmaaqabaGccaGGOaGaamiEamaaBaaaleaaca % aIYaaabeaakiabgkHiTiqadIhagaqeamaaBaaaleaacaaIYaaabeaa % kiaacMcacqGHRaWkcqWIVlctcqGHRaWkcqaHYoGydaWgaaWcbaGaam % 4AaaqabaGccaGGOaGaamiEamaaBaaaleaacaWGRbaabeaakiabgkHi % TiqadIhagaqeamaaBaaaleaacaWGRbaabeaakiaacMcaaeaacaWGwb % GaaiikaiaadMhacaGGPaGaeyypa0Jaeq4Wdm3aaWbaaSqabeaacaaI % Yaaaaaaakiaaw2haaaaa!6355! $$ \left. \begin{array}{l}E(y) = \alpha + {\beta _1}({x_1} - \bar x) + {\beta _2}({x_2} - {{\bar x}_2}) + \cdots + {\beta _k}({x_k} - {{\bar x}_k}) \\V(y) = {\sigma ^2} \\\end{array} \right\} $$ where all the y’s are independent, and where x̄ 1, x̄ 2, etc., are the means of the x’s. The quantities β 1,..., β k, are called partial regression coefficients, and they each measure the variation in y due directly to the variation in the respective x i , the other variables being fixed. The essential features of this model are: (i) Only y is a random variable. The x’s are assumed to be either under the control of the experimenter, or else to be measurable with negligible error. (ii) The expectation of y is a linear function of the unknown parameters β j . (iii) The observations y i , i = 1, 2,..., n, are uncorrelated and have constant variance.
Keywords: Tool Life; Simple Linear Regression; Normal Equation; Variance Table; Partial Regression Coefficient (search for similar items in EconPapers)
Date: 1972
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-1-4899-3288-4_11
Ordering information: This item can be ordered from
http://www.springer.com/9781489932884
DOI: 10.1007/978-1-4899-3288-4_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().