EconPapers    
Economics at your fingertips  
 

Bodies of Constant Width in Differential Geometry

Horst Martini (), Luis Montejano and Déborah Oliveros
Additional contact information
Horst Martini: Chemnitz University of Technology, Faculty of Mathematics
Luis Montejano: Universidad Nacional Autónoma de México, Campus Juriquilla, Instituto de Matemáticas
Déborah Oliveros: Universidad Nacional Autónoma de México, Campus Juriquilla, Instituto de Matemáticas

Chapter Chapter 11 in Bodies of Constant Width, 2019, pp 247-277 from Springer

Abstract: Abstract Let $$\phi \subset \mathbb {E}^n$$ ϕ ⊂ E n be a strictly convex body whose boundary is twice differentiable and whose curvature never vanishes. Recall that the inverse Gauss map $$\gamma :\mathbb {S}^{n-1} \rightarrow {{\,\mathrm{\mathrm {bd}}\,}}\phi $$ γ : S n - 1 → bd ϕ is a diffeomorphism that assigns to each unit vector $$u\in \mathbb {S}^{n-1}$$ u ∈ S n - 1 the point $$\gamma (u)$$ γ ( u ) in the boundary of $$\phi $$ ϕ for which u is the outward unit normal vector.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-03868-7_11

Ordering information: This item can be ordered from
http://www.springer.com/9783030038687

DOI: 10.1007/978-3-030-03868-7_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-11
Handle: RePEc:spr:sprchp:978-3-030-03868-7_11