Bodies of Constant Width in Differential Geometry
Horst Martini (),
Luis Montejano and
Déborah Oliveros
Additional contact information
Horst Martini: Chemnitz University of Technology, Faculty of Mathematics
Luis Montejano: Universidad Nacional Autónoma de México, Campus Juriquilla, Instituto de Matemáticas
Déborah Oliveros: Universidad Nacional Autónoma de México, Campus Juriquilla, Instituto de Matemáticas
Chapter Chapter 11 in Bodies of Constant Width, 2019, pp 247-277 from Springer
Abstract:
Abstract Let $$\phi \subset \mathbb {E}^n$$ ϕ ⊂ E n be a strictly convex body whose boundary is twice differentiable and whose curvature never vanishes. Recall that the inverse Gauss map $$\gamma :\mathbb {S}^{n-1} \rightarrow {{\,\mathrm{\mathrm {bd}}\,}}\phi $$ γ : S n - 1 → bd ϕ is a diffeomorphism that assigns to each unit vector $$u\in \mathbb {S}^{n-1}$$ u ∈ S n - 1 the point $$\gamma (u)$$ γ ( u ) in the boundary of $$\phi $$ ϕ for which u is the outward unit normal vector.
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-03868-7_11
Ordering information: This item can be ordered from
http://www.springer.com/9783030038687
DOI: 10.1007/978-3-030-03868-7_11
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().