EconPapers    
Economics at your fingertips  
 

Stability for First-Order Functional Dynamic Equations

Svetlin G. Georgiev
Additional contact information
Svetlin G. Georgiev: Sorbonne University, Paris, France, Faculty of Mathematics & Informatics, Sofia University St. Kliment Ohridski

Chapter Chapter 5 in Functional Dynamic Equations on Time Scales, 2019, pp 161-254 from Springer

Abstract: Abstract Let ๐•‹ $$\mathbb {T}$$ be an unbounded above time scale with forward jump operator and delta differentiation operator ฯƒ and ฮ”, respectively. Let also, ฮฒ = min { t : t โˆˆ ๐•‹ } $$\beta =\min \{t: t\in \mathbb {T}\}$$ and r > 0.

Date: 2019
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-15420-2_5

Ordering information: This item can be ordered from
http://www.springer.com/9783030154202

DOI: 10.1007/978-3-030-15420-2_5

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-10
Handle: RePEc:spr:sprchp:978-3-030-15420-2_5