Logratio Approach to Distributional Modeling
Peter Filzmoser (),
Karel Hron () and
Alessandra Menafoglio ()
Additional contact information
Peter Filzmoser: Vienna University of Technology, Institute of Statistics and Mathematical Methods in Economics
Karel Hron: Palacký University, Department of Mathematical Analysis and Applications of Mathematics
Alessandra Menafoglio: Politecnico di Milano, MOX, Department of Mathematics
A chapter in Advances in Contemporary Statistics and Econometrics, 2021, pp 451-470 from Springer
Abstract:
Abstract Distributional data, such as age distributions of populations, can be treated as continuous or discrete data, but the main interest is in the relative information, e.g., in terms of ratios (or logratios) between the different age classes. Here we present a unifying framework for the discrete and the continuous case based on the theory of Bayes spaces. While the discrete case is more widely treated in the literature, the continuous case allows to make a link to functional data analysis. Moreover, the methodological framework of Bayes spaces can also be used to develop methods for analyzing several distributional variables simultaneously. It turns out that the centered logratio transformation is a convenient tool for practical computations. Two real data examples illustrate the usefulness of this framework.
Date: 2021
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-73249-3_23
Ordering information: This item can be ordered from
http://www.springer.com/9783030732493
DOI: 10.1007/978-3-030-73249-3_23
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().