EconPapers    
Economics at your fingertips  
 

Almost Automorphic Functions

Gaston M. N’Guérékata
Additional contact information
Gaston M. N’Guérékata: Morgan State University, Department of Mathematics

Chapter Chapter 2 in Almost Periodic and Almost Automorphic Functions in Abstract Spaces, 2021, pp 17-35 from Springer

Abstract: Abstract Let 𝕏 $$\mathbb X$$ be a (real or complex) Banach space and f ∈ C ( ℝ , 𝕏 ) $$f\in C(\mathbb R,\mathbb X)$$ . We say that f is almost automorphic if for every sequence of real numbers ( s n ′ ) $$(s^{\prime }_n)$$ there exists a subsequence (s n) such that lim m → ∞ lim n → ∞ f ( t + s m − s n ) = f ( t ) $$\displaystyle \displaystyle \lim _{m\to \infty }\displaystyle \lim _{n\to \infty }f(t+s_m-s_n)=f(t) $$ for each t ∈ ℝ $$t\in \mathbb R$$ .

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-030-73718-4_2

Ordering information: This item can be ordered from
http://www.springer.com/9783030737184

DOI: 10.1007/978-3-030-73718-4_2

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-18
Handle: RePEc:spr:sprchp:978-3-030-73718-4_2